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Prebiotic syntheses of chiral monomers always yield racemic
mixtures. Living systems, however, utilizeamino acids and
D-nucleotides in their biopolymers. The generation of optical
asymmetry by selection and amplification in an autocatalytic

process is, therefore, an important element in many theories of

the origin of lifel=2 Replication of polynucleotides in template-

directed syntheses is an obvious candidate for such an ampli-

fication step in a pre-“RNA world*> A serious objection to
this suggestion is the observation that the efficiency of template-
directed syntheses of RNA is limited by enantiomeric cross-
inhibition® Peptide nucleic acids (PNAS)? amide-linked,
nonchiral analogues of RNA, have been “copied” into RNA
and constitute an alternative to chiral polynucleotides as an
informational replicating system. Here, we use PNA as model
for a hypothetical, nonchiral precursor of RNA in experiments
re-examining enantiomeric cross-inhibition. We find that enan-
tiomeric cross-inhibition is as serious in the polymerization of
nucleotides on a PNA template as it is on a conventional RNA
or DNA template.

L-Guanosine Smonophosphate {5'-GMP) was synthesized
starting fromL-ribopyranose (Sigma) following well-established
procedureS—15and gave -5'-GMP in 18% yield. All analytical
data forL-5-GMP were identical to those for the natural
D-enantiomer. L-5-GMP was converted ta-guanosine 5
phosphoro-2-methylimidazolide-2-MelmpG) (Figure 1A) in
95% yield® All reaction conditions in our template-directed
reactions were chosen to facilitate comparison with previously
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Figure 1. (A) Structure ofb-2-MelmpG and (B) structure of DNA (l)

and PNA (II). The PNA structure has been drawn to emphasize its
relation to the standard DNA structure.

published results; all peak assignments are in accord with those
established in earlier publicatio#!”

The reaction of 0.1 Mb-2-MelmpG gives oligomers up to
an octamer in good yields on a DNA & template after 24 h
(Figure 2a), whereas the reaction wit2-MelmpG gives only
small amounts of a complex mixture of oligomers up to a
maximum length of three (Figure 2b). Two sets of experiments
were carried out with racemic mixtures of the activated
nucleotides. In the first the concentration was reduced to 0.05
M for each enantiomer, thereby maintaining the overall con-
centration of activated nucleotides at 0.1 M. In the second set
of experiments we used a 0.1 M concentration of each
enantiomer to avoid dilution of the-enantiomer. Oligomer-
izations using the lower concentration gave oligomers up to only
a tetramer with yields diminished from those obtained in the
reaction with the 0.1 Mb-2-MelmpG alone (Figure 2d). In
experiments with 0.1 M each of the nucleotides, higher yields
of short oligomers were obtained, but the tetramer was still the
longest detectable oligomer (Figure 2c). These results on a
DNA template are similar to those reported in an earlier study
of enantiomeric cross-inhibition on RNA.

The “nonchiral” PNA Gp strand cannot, in principle,
distinguish between the nucleotide enantiomers since it is
capable of adopting equivalent left- and right-handed helical
conformations. A PNA & template, as anticipated, supported
almost equally effective oligomerization of andL-2-MelmpG
(Figure 3, parts a and b). Very minor differences in the
efficiency of the reaction and in the product distribution can be
attributed to the chiral-lysine that is attached to the template
in order to increase its solubilifyy. The reaction of a solution
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Figure 2. Oligomerization ofb-guanosine Bphosphoro-2-methylimi-
dazolide (2-MelmpG) on a (dg@template: (a) 0.1 M>-2-MelmpG;

(b) 0.1 M L-2-MelmpG; (c) a mixture of 0.1 M>- and 0.1 ML-2-
MelmpG; (d) a mixture of 0.05 Mp- and 0.05 ML-2-MelmpG.
Reactions were analyzed after 1 d. Reaction condition®C;41.2 M
NacCl; 0.2 M MgC}; 0.005 M template; and 0.2 M 2,6-lutidine buffer,
pH 7.8 (at room temperature). Reaction solutions were prepared in 0.7
mL Eppendorf tubes in &L volumes. First stock solutions of NaCl
and MgC} with the template were coevaporated to dryness. To start
the reaction, the residue was redissolved in a freshly prepared solution
of 2-MelmpG in 2,6-lutidine buffer. At appropriate timesul of a
reaction solution was added to 10D of an aqueous solution containing
0.01 M HCl and 0.002 M EDTA. The resulting solution (pH 2.38.0)

was kept at 37C for 24 h to hydrolyze surviving phosphoroimidazoles
and then neutralized with agueous NaOH. A /4I0 sample of this
solution was mixed with 1 mL of starting buffer (pH 12) and analyzed
by HPLC on RPC-5 as previously descril#8@! The reaction products
were eluted with a linear gradient of NaGI(pH 12, 0-0.08 M, 60
min). UV absorption monitored at 254 nm.

containing equal 0.05 M concentrationsmfandL-2-MelmpG

on a PNA G template gives only short oligomers, including a
trace of the tetramer (Figure 3d). When the concentration of
each enantiomer is increased to 0.1 M, the yield of short
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Figure 3. Oligomerization ofL- and p-guanosine-5phosphoro-2-
methylimidazolide (2-MelmpG) on a PNA;gtemplate: (a) 0.1 M-
2-MelmpG; (b) 0.1 ML-2-MelmpG,; (c) a mixture of 0.1 M- and
L-2-MelmpG (dashed line gives reaction without template); (d) a
mixture of 0.05 Mp- andL-2-MelmpG. Reactions were analyzed after

1 d. Reaction conditions and analysis are as described in the caption
to Figure 2.

mers is sufficient to stabilize a helical structure with a DNA
template, but a homochiral trimer is required in the case of a
PNA template.

We have not studied the PNA-directed reactions of bases
other than G. Perhaps enantiomeric cross-inhibition would be
less severe for other bases, particularly for the pyrimidines which
do not readily adopt the syn-configuration. Nevertheless, it now
seems unlikely that the choice of a new template, whether chiral
or achiral, will overcome enantiomeric cross-inhibition so
generally as to permit the template-directed replication of
oligomers long enough to seed the direct emergence of the RNA
world from a solution of racemic activated ribomononucleotides.
The origin of the RNA world from ribomononucleotides
presumably depended on the availability of substrates that were
chirally-enriched, selectively adsorbed on chiral mineral sur-

oligomers increases, but the tetramer is still the largest detectablgaces, or synthesized by a chiral catalyst formed in a pre-RNA

oligomer (Figure 3c). This clearly shows that the absence of
longer products on a PNA template is due to enantiomeric cross-
inhibition.

A somewhat more detailed analysis of the HPLC elution
profiles is possible. Comparison of Figures 2a and 3a shows
that the trimer peak is more complex when PNA is used as a
template in place of DNA. The individual subpeaks must
correspond to 2-5'-linked and pyrophosphate-linked products
in addition to the 3-5'"-linked product$®1® However, longer

oligomers are represented by a single predominant peak in both

informational system.
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